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Figure 1.54. Example of a mass spectrum of a polymer obtained in MALDI-TOF mass
spectrometry. Poly(ethylene glycol) of a nominal molecular weight of 2,000 g/mol is shown.

(From Ref. 10.)

\{— Real polymer (broad MWD)

The Bigger Picture: Challenges
and opportunities

Universal catalysts compatible with a range of
monomers and stimuli are urgently required to
produce materials with enhanced control over
monomer sequence, dispersity,and tacticity

New depolymerization and degradations for
polymer recycling and bio-relevant applications
should be the focus of future research

Advanced characterization methods,
automation systems, and machine learning are
currently undeveloped and could offer exciting new
avenues

Chem, 1575-1588, July 9, 2020 2020 Elsevier Inc.1575
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Controlled Radical Polymerization
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Future Challenges
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The relationship between the degree of branching and glass transition temperature of
branched polyethylene:experiment and simulation
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Polymer Topology Matters

| e [.inear chains
: move like a snake

(b)

e Rings move by
an amoeba-like
motion
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linear polymer hyperbranched polymer

e

linear three-dimensional, irregular three-dimensional, regular
one-step synthesis one-step synthesis multi-step synthesis
easy purification by precipitation easy purification by precipitation purification by chromatography
easy scale-up easy scale-up difficult scale-up
dispersity (D) > 1.01 Pp>1.1 =10

DB = 0.4-0.6 DB =1.0
no cavity presence of cavities numerous cavities
2 end-groups multiple end-groups large number of end-groups
strong entanglements weak entanglements no entanglements
high viscosity low viscosity very low viscosity

Journal of Controlled Release, 2020, 321, pp.285-311.
ff10.1016/j.jconrel.2020.02.019ff.
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Thermal field-flow fractionation (ThFFF) was used to characterize the architecture of
aromatic—aliphatic polyesters with varying degrees of branching
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Thermophoretic force

S; = D{/D

D, diffusion coefficient; D the thermodiffusion

A Soret contraction factor (g"”), defined as the ratio of the
ST of a branched polymer to the ST of a molecular weight
equivalent linear analogue, is introduced as a metric to

indicate degree of branching (DB).

coefficient. The quotient of both coefficients is called

10 Soret coefficient (S;).

Anal. Chem. 2019, 91, 19, 12344-12351
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Effect of the degree of branching on the glass transition temperature of polyesters
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Hyperbranched Polymers with High Degrees of Branching and Low Dispersity Values:
Pushing the Limits of Thiol-Yne Chemistry
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v Fast, UV, v" High degrees v Low dispersity
one-pot of branching values
Degrees of branching were Increasing the fraction of core molecule
determined by 'H NMR was found to decrease dispersity to
spectroscopy to be greater than values as low as 1.26 and 1.38 for the
0.8 in most cases. alkene core and alkyne core.
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Hyperbranched Polymers with High Degrees of Branching and Low Dispersity Values:
Pushing the Limits of Thiol-Yne Chemistry
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Depends on the reaction mechanism of the polymer formation reaction and the chosen

conditions (e.g. p, T)

Kind of polymer Reaction My/My
Living Polymers Anionic Group transfer 1.0...1.05
Condensation polymer Step reaction Bifunctional _5
Monomers
Radical addition
" Cationic addition Coordination 2-10
Addition polymers . :
polymerization (Organometallic
complexes) 2-30
Branched Polymers Radical 2-50
Step reaction of tri-, o0
Networked Polymers tetrafunctional Monomers at the gel point

Atom transfer radical polymerisation (ATRP), reversible addition—fragmentation chain-transfer
(RAFT) polymerisation and nitroxide-mediated radical polymerisation (NMP) have enabled the
synthesis of well-defined macromolecules with controlled molecular weight, architecture, end-group

fidelity and dispersity. Dispersities in the range of b = 1.01-1.20
15
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Principles and Characteristics of Polymerization-Induced Self-Assembly (PISA) with Various
Polymerization Techniques

Preparation of a pre-defined polymer architecture is a
key challenge to a researcher.

Polymerization Induced Self-Assembly (PISA) to synthesize
polymeric nanoparticles with pre-defined morphology and
precise control over size and shape. This methodology
has become a potential strategy for the synthesis of
various block copolymer nano-objects. The PISA
strategy produces core-shell polymeric nanoparticles with a
wide scope of morphologies including spheres, worms,
rods, and vesicles.

A few parameters including the degree of polymerization,
core-forming monomers, macro-CTA and solid content

of the final product are precisely employed for the PISA

procedure to accomplish the ideal size and shape.

16
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Principles and Characteristics of Polymerization-Induced Self-Assembly (PISA) with Various
Polymerization Techniques

Alternative PISA protocols, which allow
the preparation of nanoparticles with
improved control over copolymer

morphology and functionality.

For example, initiation based on visible

light, redox chemistry, or enzymes enables
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The statistical growth of a constant number of chains in a [iving polymeriza-
tion [eads to the narrow Poisson distribution of the mole fraction as a function of
the degree of polymerization N:

,L,N—IE—'L'

RO

v = {N}, — 1 and I'(N) is the gamma function. The corresponding distribution in
terms of mass fractions is

NyN-1g—v

W) = F o £ 1)<

The polydispersity decreases with increasing degree of polymerization and
depends only on {N},:

(N _
(N},

The much broader Schulz—Flory distribution

1+ (N D — (N) 2= 1+ (N

w(N) = (N);*N(1 — (Ny; )N

with a constant polydispersity of (N},/{N}, =2 is known from radical
polymerization [9].
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Typical Distributions
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Poisson and Schulz-Flory distribution with identical N = 50. The arrows

indicate N, = 51 (Poisson) and N,, = 100 (Schulz—Flory).
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Step-growth Polymerization

Step growth polymerization is the formation of a polymer from bi-functional or multifunctional monomers.

Self-condensation of A-B and the stoichiometric polymerization

of A-A with B-B where A may react only with B and vice-versa.

Let p = probability that a B group has reacted (This is

equivalent to the fraction of B groups reacted)

1 — p = probability that a B group is unreacted

In virtually all cases one can assume that the reaction events
are independent. Thus, the probability that an x-mer has

formed is given by p *-1(1-p)

20
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Step-growth Polymerization
Most Probable Distribution: Number Fraction Most Probable Distribution: Weight Fraction
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Chain growth polymerization is the formation of polymers from unsaturated monomers.

Chain-Growth

Consider a chain growing until random something stops it.

Let p = probability that it keeps on going. . + 1 Initiation
1 — p = probability that it gets stopped l
Thus, the probability that an x-mer formsS is given by p *-1 (1-p) ® -0 3]

l
9.0

According to the initiator used in the chain growth polymerization l

~ Propagation

process, there are three types of chain growth polymerization.

L .
= Radical Polymerization — the initiator is a radical m % .

= Cationic Polymerization — the initiator is an acid/cation l

9900

Termination
= Anionic Polymerization — the initiator is a nucleophile

22
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Chain-growth Polymerization

Most Probable Distribution: Number N ="' (1 =
Fraction =p (=p)
Number Average Molecular Weight, M, p E: N.M,
o ErN
Most Probable Distribution: Weight W x-1 2
=X | -
Fraction . P ( P)
Weight Average Molecular Weight, M,, A= E wM =M
FRAt bt B w
the Polydispersity M / M
"% n

It is the same as for step-growth polymerization. Other things can happen in chain growth
polymerization: two growing chains can join their two active ends, etc., = it can give rise to

different statistics.

23
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Differences from chain-growth polymerization

Step-growth polymerization Chain-growth polymerization

Growth by addition of monomer only at one end or both

Growth throughout matrix ends of chain

Rapid loss of monomer early in the reaction Some monomer remains even at long reaction times

Different steps operate at different stages of mechanism (i.e.

Similar steps repeated throughout reaction process initiation, propagation, termination, and chain transfer)

Average molecular weight increases slowly at low Molar mass of backbone chain increases rapidly at early
conversion and high extents of reaction are required to stage and remains approximately the same throughout the
obtain high chain length polymerization
Ends remain active (no termination) Chains not active after termination
No initiator necessary Initiator required
3
o" .
ke e — _ — "“High
< Pol ; "
) olymer
v weight
3
-
25
=
o
Q
O
S Step
growth
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X@y xov+x0v Xy . WP ¥ ) vvo-x'; Y‘X':_
x00v+x00v |
XPPPDY [E* X I¥ I& % X% XS I% I% B ¢ X929 Y
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I | |

living/controlled  uncontrolled ]

linear |terat|ve synthesis dendrimers
I | | | | | l
bifunctional multicomponent living ionic radical ROMP ROP
step-growth I liquid phase solid phase convergent divergent
| | | | | | %
conventional others anionic cationic NMP ATRP  RAFT single
insertion protected orthogonal
T

ester amide urethane ADMET CuAAC ARGET SARA ICAR
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5. Molar Distributions

Molar Mass in Polymers

Number average molar weight

M = 2iC  _ XLiNM,

" Yile/Mi) T ZiN,
Weight average molar weight

M = 2.i(ciM))

W
Zi ¢
z-average molecular weight

_ ZiciM?) _ XizM,

2 XleM) 2z

28
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Symmetry of the shape of the distribution

Asymmetry factor (A,) to describe the symmetry of the shape of the distribution, which gives a qualitative measure of

the skew of a distribution. This factor is determined as the ratio of the distance from the peak maximum to the front of the

peak over the distance from the peak maximum to the back of the peak at 10% of the peak height.

>

W y gﬂ Where A and B are

_ B _| M Wuppertors = My o at 10% peak height
A Mwlowerl()% - Mp E
o

N

A
\/

29
Chem. Soc. Rev., 2017, 46, 4119-4134
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Methods to tune dispersity

30

a) Polymer blending

b) Initiation regulation
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Methods to tune dispersity

Addition M,

Addition M, 2

a) Time (h) (kg/mol) © b) Time (h) (kg/mol)
—_— 00 60 117 — 00 60 117

— 05 62 1.29 - 05 65 133

—_— 10 60 147 — 075 63 146

—_— 15 61 164 — 10 67 166

-_— 20 61 183 —_— 125 63 191

-— 25 62 202 — 15 64 206

—_—— T T T e T T T
13 14 15 16 17 13 14 15 16 17
Retention Time (min) Retention Time (min)

M, b M,
C) (kg/mol) d ) (kg/mol)
— 126 105 — 155 107
— 127 115 — 157 114
— 124 125 — 154 124
— 124 140 — 156 137

15.6 1.54

1000 10000 100000 1000 10000 100000

Fig.4 Comparison of two methods by which the molecular weight distribution is tuned. Firstly, the metered addition of initiator to the NMP of
styrene with (a) at a constant rate and (b) with varying rate and secondly via the reduction of catalyst concentration in photo-induced ATRP to
maintain (c) M, or (d) M,, constant. This figure is adapted from ref. 53 and 73, permission from ACS publications and Wiley respectively.

31
Chem. Sci., 2019,10, 8724-8734
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Methods to tune the shape

¢ Metered addition of initiator

Metered addition — M =14.7kgmol™; D=1.43;A =36
s-Buli H n ' ’ T
s N s-Bu . — M_=143kgmol™; D =1.40;A =16
Ph MeOH Ph — M _=14.1kgmol™; D=1.43;A =03
2,500
2,000+

: Initiator addition
profiles of 5-Buli ”

T I T |
13 14 15 16
Time of initiator addition (min) Retention time (min)
32 Gentekos, D.T., Sifri, R.J. & Fors, B.P. Controlling polymer properties through the shape of the molecular-

weight distribution. Nat Rev Mater 4, 761-774 (2019).
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Methods to tune the shape

Tailor-made thermoplastic elastomers: customisable materials via
modulation of molecular weight distributions
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= What is the difference between hyperbranched polymers
and dendrimers? How can we determine the degree of
branching?

= Define Asymmetry factor (A,). What kind of properties can
be influenced?

= Differences from chain-growth polymerization

= How can we tune the polydispersity?
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