Polymers in Solution

Dresden, 26 ${ }^{\text {th }}$ October 2022
Silvia Moreno Pinilla

Bioactive and Responsive Polymers Institute of Macromolecular Chemistry Leibniz-Institut für Polymerforschung Dresden e.V.

2. The isolated macromolecule:
 constitution, configuration, conformation

1. Constitution
2. Chemical configuration
3. Conformation \rightarrow Microconformation
4. Conformation \rightarrow Macroconformation
5. Example Questions
6. Books recommended

1. Constitution

Homopolymer

Block copolymer

Heteropolymers

- Monomer units

- Homo-, Heteropolymers, Copolymers Alternating (ababab); periodic (abbabbabba); random (abbbababaaabbbbabab); biblock polymer; graft polymer

Block copolymer- is obtained by a copolymerization of a mixture of different types of momoners

Block polymers- by coupling of preformed polymer "blocks" or by sequential polymerization

Linear

Architecture
(Hyper)branched or dendrimers

Cyclic

1. Constitution

Higher constitution dimensions

Polycatenane

Spiro chain

Spheroidal protein

Polyrotaxane

Ladder polymer

Double ladder

Polymer tube

Double helix

Spherical molecule

Phyllo polymers- usually called layer or parquet polymers, form two-dimensional lattices- Graphene

1. Constitution

Higher constitution dimensions

COMMUNICATIONS CHEMISTRY

ARTICLE

One-pot synthesis of cyclodextrin-based radial poly [n]catenanes
Taishi Higashi© ${ }^{1,2,3}$, Kentaro Morita ${ }^{2}$, Xia Song ${ }^{3}$, Jingling Zhu ${ }^{3}$, Atsushi Tamura \odot^{4}, Nobuhiko Yui ${ }^{4}$,
Keiichi Motoyama ${ }^{2}$, Hidetoshi Arima ${ }^{5}$ \& Jun Lio ${ }^{3}$

Fig. 1 Preparation of a β-CyD-based polycatenane. To remove the remaining polypseudorotaxane and free HS-PEG-PPG-PEG-SH and β-CyD, the crude product was dissolved in DMSO and washed with water and acetone

1. Constitution

Higher constitution dimensions

Fig. 2 Thiol-group content in the reaction suspensions. a Absorbance of 2-nitro-5-thiobenzoic acid and \mathbf{b} thiol-group content in suspensions obtained by treating the prepared polycatenane with $\mathrm{H}_{2} \mathrm{O}_{2}$ solutions of varying concentration

Fig. 4 Release of β-CyD from the polycatenane, a Schematic release of β-CyD from a polycatenane upon reduction. b Particle size distributions of β-CyD polycatenanes in the presence of DTT. c GPC profiles of β-CyD-based polycatenanes after treatment with DTT. d β-CyD-release profiles from polycatenanes in the absence/presence of DTT. Each data point corresponds to the mean \pm standard error of three experiments
2. Chemical configuration. Basic Terms

Isomers

Constitutional
Same formula, different connectivity

Stereoisomers
Same molecular formuladifferent compounds

Same formula, same connectivity, different arrangement

2. Chemical configuration Statistics

Configurational isomers- a large energy barrier (Isotactic/Syndiotactic or cis/trans)
Conformational isomers- a low energy barrier, they are interconverted rapidly into each other

Configurational statistics (1940s)

Isotactic

Syndiotactic

Atactic

2. The isolated macromolecule

3. Microconformations

Local Conformations Torsion angle $\boldsymbol{\theta}$ (conformational angle, rotational angle, dihedral angle)

Graphing the rotational barrier in ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ as a function of dihedral angle

The barrier to rotation in ethane is about $3.0 \mathrm{kcal} / \mathrm{mol}$.

3

- Prefered positions are microconformations
- Repeating sequences of microconformations defining the macroconformation
- Very slow changes in crystalline state
- Very fast changes in dilute solution
- Persistence of prefered conformation

Macroconformations:
Examples: spheroidal proteins, rod like nucleic acids, stabilised
by internal interactions constitution

4. Macroconformations

The shape of an isolated macromolecule is determinated by its molecular conformation (= macroconformation) which in turn depends on the type, proportion, and sequence of microconformations within the molecule.

4. Macroconformations

Nature has unparalleled control over the conformation and dynamics of its folded macromolecular structures. Nature's ability to arrange amino acids into a precise spatial organization by way of folding allows proteins to fulfill specific functions in an extremely efficient manner. Chemists and materials scientists have used the delicate structure-function relationships observed in proteins to elucidate nature's design principles.

4. Macroconformations

The ideal chain

No correlation between polymer monomers separated by long distances along the polymer.
$>$ Short range correlations between neighboring monomers are not excluded
$>$ Ideal chain models do not take interactions caused by conformations in space into account
> Ideal chains allow the polymer to cross itself

Modeling a polymer

Imagining a blown up picture of a section of the polymer in a certain conformation, could look like this:
a) Conformations:

Torsion angle $\boldsymbol{\theta}$
Bond angle τ
b) Bond vectors:

Starting from one end we use vectors r_{i} to represent the bonds
c) End-to-end vector:

The sum of all bond vectors
The ensamble average of $\left\langle\overrightarrow{\boldsymbol{R}}_{\mathrm{n}}\right\rangle=0$ due to isotropy
d) Mean square end-to-end distance:

$$
\overrightarrow{\boldsymbol{R}}_{\mathrm{n}}=\sum_{i=1}^{n} \vec{r}_{i}
$$

Simplest non-zero average 13

$$
\left\langle R^{2}\right\rangle=\left\langle\vec{R}_{n} * \vec{R}_{n}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle\vec{r}_{i} \vec{r}_{j}\right\rangle
$$

$$
\text { persistence length } \ell_{\mathrm{p}} \sim 5 \AA
$$

Single chain

Rigid rod
$L_{p} / L_{c} \gg 1$

Helical chain

4. Macroconformations

Freely jointed chain Kuhn 1934

The end-to-end distance is the distance between the first particle and the last particle of one molecular chain. It has no physical meaning for cyclic or branched molecules.

No correlation between the directions of different bond vectors. θ and τ are free to rotate. All bond vectors have: I_{s} (segment lenght) and n_{s} (number of segments), R (end-to-end distance)
$\left\langle\vec{R}^{2}\right\rangle=\left\langle\vec{R}_{n} * \vec{R}_{n}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle\vec{r}_{i} \vec{r}_{j}\right\rangle$
$\left\langle\vec{r}_{i} \vec{r}_{j}\right\rangle=\left\langle l_{s} l_{s} \operatorname{cont}_{i j}\right\rangle \rightarrow\left\langle\vec{R}^{2}\right\rangle=\mathrm{Is}^{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle\operatorname{cont}_{i j}\right\rangle$

No correlation between different bond vectors, $\mathrm{i} \neq \mathrm{j}$

$$
\left\langle\vec{r}_{i} \quad \vec{r}_{j}\right\rangle=\left\langle\vec{r}_{i}\right\rangle *\left\langle\vec{r}_{j}\right\rangle=0
$$

Maximum R- the most probable end-toend distance Kuhn segment

$$
\mathrm{L}_{\mathrm{k}}=\mathrm{R}_{\max }=\mathrm{n}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}
$$

$$
\mathrm{M} \sim \mathrm{n}_{\mathrm{s}} \quad\left\langle R^{2}\right\rangle^{\sim} \mathrm{M}
$$

4. Macroconformations

Freely rotating chain and characteristic ratio $\left(C_{\infty}\right)$

Bond angle τ is fixed. Torsion angle θ still free to rotate.
$\left.\left\langle\vec{R}^{2}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle\vec{r}_{i} \quad \vec{r}_{j}\right\rangle==\right\rangle\left\langle\vec{r}_{i} \quad \vec{r}_{j}\right\rangle=$?
Ex: What is the correlation between vector \vec{r}_{3} and \vec{r}_{0} ?
Due to the free rotation around the torque angle, only the perperdicular component of r_{3} is paased down.

$\left\langle\vec{r}_{3} * \vec{r}_{0}\right\rangle=l_{c c}\langle\text { con } \tau\rangle^{2} * l_{c c}\langle$ con $\tau\rangle=l_{c c}{ }^{2}\langle\text { con } \tau\rangle^{3}$

The general expession becomes:
Restricted rotation

$$
\left\langle\vec{r}_{i *} \vec{r}_{j}\right\rangle=\left.l c c^{2}\langle\text { con } \tau\rangle\right|^{i-j}
$$

$$
\left\langle R^{2}\right\rangle_{0 f}=n_{c c} l_{c c}^{2} \frac{1-\cos \tau}{1+\cos \tau}
$$

$$
\left\langle R^{2}\right\rangle_{0 r}=n_{c c} l_{c c}{ }^{2} \frac{1-\cos \tau}{1+\cos \tau} \frac{1+\cos \theta}{1-\cos \theta} \quad \frac{\left\langle R^{2}\right\rangle_{0 r}}{\left\langle R^{2}\right\rangle_{0 f}}=\frac{1+\cos \theta}{1-\cos \theta}=\frac{1+\cos 70,5}{1-\cos 70,5} \approx 2
$$

$$
\frac{\left\langle R^{2}\right\rangle_{0 r}}{\left\langle R^{2}\right\rangle_{0 f}}=\sigma^{2}
$$

$$
\sigma \text { restriction parameter }
$$

C_{∞} is called Flory's characteristic ratio, and can be seen as a measure of the stiffness of the polymer in a given ideal chain model.

$$
\left\langle R^{2}\right\rangle=\mathrm{n}_{c c} \mathrm{l}_{c c}^{2} C_{\infty}
$$

4. Macroconformations

Freely rotating chain and characteristic ratio

Polymer	Solvent	$\mathbf{T}\left({ }^{\circ} \mathbf{C}\right)$	\mathbf{C}_{∞}	$\mathbf{I}_{s} / \mathbf{I}_{\mathrm{CC}}$	$\boldsymbol{\sigma}$
at-Polystyrol	cyclohexane	34	10.2	12	2.3
at-Polypropylen	diphenylether	153	5.3	6.5	1.61
Polyisobutylen	benzene	24	6.6	8.0	1.80
at-Polymethylmethacrylat	different	$4-70$	6.9	8.4	2.08
at-Polymethylmethacrylat	butyl chloride	35	7.2	8.8	1.74
Polysimethylsiloxan	2-butanone	20	6.2	-	1.39
Polyvinylchlorid	benzyl alcohole	155	9.2		2.08
Polyethylen	diphenyl methane 142	6.7	8.2		
$\mathrm{l}_{\mathrm{C} \text {-C }}=$ length of C-C bond					
18					

4. Macroconformations

Scaling of the Radius of Gyration

$\left\langle\boldsymbol{s}^{2}\right\rangle$ scattering methods deliver the average square of the radius of gyration $\left\langle\boldsymbol{R}^{2}\right\rangle$ not easy to determine; problems in case of branching - end-to-end distance

S center of mass; s_{i} distance center of mass-segment; $r_{i j}$ distance segment-segment

$$
\begin{gathered}
\left\langle S^{2}\right\rangle_{0}=\frac{1}{2 n^{2}} \sum_{i} \sum_{j} \mathbf{r}_{\mathrm{ij}}^{2}=\frac{1}{n+1} \sum_{i} \mathbf{s}_{\mathbf{i}}^{2} \\
\text { For } \mathrm{n} \gg 10 \quad\left\langle S^{2}\right\rangle_{0}=\frac{\left\langle R^{2}\right\rangle_{0}}{6} \quad\left\langle s^{2}\right\rangle=\frac{\left\langle R^{2}\right\rangle_{0}}{(2+\varepsilon)(3+\varepsilon)} \\
\begin{array}{c}
\text { state }
\end{array} \\
\left\langle S^{2}\right\rangle \sim M^{2 v} \quad \varepsilon=2 n-1, \text { depends on the quality of the solvent } \\
\left\langle S^{2}\right\rangle^{1} / 2 \sim M^{v} \begin{array}{c}
\left\langle s^{2}\right\rangle=R_{g} \\
\text { Radius of Gyration }
\end{array}
\end{gathered}
$$

Radius of gyration and molar mass

Shape of macromolecule	Characteristic dimension - radius of gyration	Characteristic dimension - molecular weight
unperturbed coil	$<\mathrm{h}^{2}>_{\mathrm{o}}=6<\mathrm{r}^{2}>_{\mathrm{o}}$	$<\mathrm{h}^{2}>_{\mathrm{o}} \sim \mathrm{M}$
random coil, good solvent	$<\mathrm{h}^{2}>=(2+\varepsilon)(3+\varepsilon)<\mathrm{r}^{2}>$	$<\mathrm{h}^{2}>\sim \mathrm{M}^{1+\varepsilon}$
thin rod, length L	$<\mathrm{L}^{2}>=12<\mathrm{r}^{2}>$	$\mathrm{L} \sim \mathrm{M}$
hard sphere, radius R *)	$<\mathrm{R}^{2}>=(5 / 3)<\mathrm{r}^{2}>$	$\mathrm{R} \sim \mathrm{M}^{1 / 3}$
disc, radius R	$<\mathrm{R}^{2}>=2<\mathrm{r}^{2}>$	$\mathrm{R} \sim \mathrm{M}^{1 / 2}$
0	$\left\langle R^{2}\right\rangle_{0}=6\left\langle s^{2}\right\rangle_{0}$	$\left\langle R^{2}\right\rangle_{0} \sim \mathrm{M}$

\rightarrow Conformational analysis and estimation of the persistence length of DNA using atomic force microscopy in solution DOI: 10.1039/c0sm01160f
\rightarrow Flexibility of single-stranded DNA measured by single-molecule FRET
https://doi.org/10.1016/j.bpc.2014.08.004
2. The isolated macromolecule

4. Macroconformations

The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions

Fig. 1 Simulation snapshots of typical PEO $(n=36)$ conformation in (a) water and (b) isobutyric acid. Solvent is not shown. Carbons, oxygens and hydrogens are shown in cyan, red and white, correspondingly.

Table 1 The average end-to-end distance, $R_{\text {end, }}$, radius of gyration, R_{g}, aspect ratio, $R_{\text {end }} / R_{\mathrm{g}}$, and asphericity (eqn (1)) for PEO in different solvents

Solvent	$R_{\text {end }}(\mathrm{nm})$	$R_{\mathrm{g}}(\mathrm{nm})$	$R_{\text {end }} / R_{\mathrm{g}}$	Asphericity ($\left.\mathrm{nm} \mathrm{m}^{2}\right)$
Hexane	1.61 ± 0.6	0.75 ± 0.08	2.15 ± 0.78	0.21 ± 0.13
Benzene	3.08 ± 1.3	1.30 ± 0.30	2.32 ± 0.71	1.18 ± 0.87
Water	3.42 ± 1.0	1.35 ± 0.19	2.50 ± 0.51	
Isobutyric acid	5.95 ± 0.46	2.07 ± 0.08	2.87 ± 0.22	

4. Macroconformations

Size, shape, and structure. Gyration tensor and measures of asphericity

SIZE: How large or how long is the polymer chain?

SHAPE: What does the polymer chain look like?

STRUCTURE: How order/disorder the system is?

Isotropic system: no differences in dimension $R_{g}{ }^{2}=R_{x}{ }^{2}+R_{y}{ }^{2}+R_{z}{ }^{2}$
Anisotropy system \rightarrow no differences in dimension, gyration tensor
Desviation form the ideal sphere
ASPHERICITY VALUE $\quad<A>=1 / 2 \frac{\sum<\left(\mathrm{R}_{\mathrm{gi}}{ }^{2}-\mathrm{R}_{\mathrm{gj}}{ }^{2}\right)>}{\left(<\sum \mathrm{R}_{\mathrm{gi}}{ }^{2}>\right)^{2}}$
Higher A, higher anisotropy

$$
<A>=0 \quad \text { Perfect sphere } \quad \mathrm{R}_{\mathrm{g} 1}=\mathrm{R}_{\mathrm{g} 2}=\mathrm{R}_{\mathrm{g} 3}
$$

$<A>=1$ Perfect rod $\quad \mathrm{R}_{\mathrm{g} 1}=\mathrm{R}_{\mathrm{g}} \quad \mathrm{R}_{\mathrm{g} 2}=\mathrm{R}_{\mathrm{g} 3} \sim 0$
2. The isolated macromolecule

4. Macroconformations

Size, shape, and structure. Gyration tensor and measures of asphericity

Figure 6: Elongated shape of the chromatin model polymers. A. Illustration of the gyration tensor. The gyration ellipsoid is shown for an elongated and a compact polymer conformations in two dimensions. The ratio $\lambda_{2} / \lambda_{1}$ is large for the elongated polymer, indicating strong devations from a sphere-like shape. B. Example conformations for a chain of length $N=128$ and loop lifetime τ_{1} (see eq. ??) for different looping probabilities. The shown conformations are one sample of the ensemble of conformations belonging to the data point marked in figure \mathbf{C}. \mathbf{C}. The ratios between the gyration tensor's main axes. The upper graph shows the ratio between the largest and smallest main axis, the lower graph the ratio between the second largest and smallest main axis. The data is shown for chain length up to $N=512$, different lifetimes of the loops ($\tau=\tau_{1}$ solid line, $\tau=\tau_{2}$ dotted line, $\tau=\tau_{3}$ dashed line) and different looping

Volume excluded - hard sphere

$$
V_{e}=\frac{4}{3} \pi(2 R)^{3}
$$

$$
u(\text { excluded volume })=4 \pi d^{3} / 3=32 \pi R^{3} / 3=8 V
$$

5. Example questions

- Define end-to-end distance, radius of gyration and persistence length
- Polystyrene with molar mass $5 \times 10^{5} \mathrm{~g} / \mathrm{mol}$ has $\left\langle\mathrm{h}^{2}\right\rangle_{\mathrm{o}}=300 \mathrm{~nm}^{2}$, calculate $\left\langle\mathrm{h}^{2}\right\rangle_{0}$ for a PS with molar mass of $1 \times 10^{6} \mathrm{~g} / \mathrm{mol}$; calculate $\left\langle r^{2}\right\rangle_{0}$ for both molar masses
- How can you measure $\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{o}}$?
- How can you measure persistence length?

2. The isolated macromolecule
3. Recommended Books

Macromolecules

Volume 3: Physical Structures and Properties Hans-Georg Elias
Wiley-VCH GmbH \& Co. KGaA, Weihnheim 2008

Polymer Solutions

An introduction to physical properties Iwao Teraoka
Wiley-Interscience 2002

Volume 3:
Physical Structures and Properties

