Numerik und Computersimulationen in der weichen kondensierten Materie
Responsible: Prof. Jens-Uwe Sommer
Hours per week (2 + 2)
Language: English
Materials: Exercises and Scripts
Part 1. Monte-Carlo Methods (Dr. Werner)
- Simple & importance sampling
- Markov chains, detailed balance & Metropolis algorithm
- Random walks and diffusion
- Molecules with excluded volume and the „blob“ concept
- Monte Carlo in various ensembles
- Methods for estimating free energies
Part 2. Machine Learning Methods (Dr. Werner)
- Regression and classification
- Artificial neural networks
- Recurrent and convolutional networks
- Autoencoders
Part 3. Molecular dynamics (MD) simulation (Dr. Merlitz)
- Classical mechanics
- Time integration schemes
- Typical softmatter models
- Thermo- and barostats
- Averaged properties
- Time-correlation functions
- Transport coefficients
- Brownian dynamics
Recommended literature:
Daan Frenkel & Berend Smit, Understanding Molecular Simulation, Academic Press (2002)
D. C. Rapaport, The Art of Molecular Dynamics Simulations, Cambridge University Press (2007).
M. E. J. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford (2001).
M. Rubinstein, R. Colby: Polymer Physics, Oxford University Press, Oxford (2004).
M. Doi, S.F. Edwards: The theory of polymer dynamics, Clarendon Press, Oxford (1986).
I. Goodfellow, Y. Bengio, A.Courville, "Deep Learning", MIT Press, Cambridge (2016) (http://www.deeplearningbook.org)
E. Alpaydın, Introduction to machine learning, MIT Press, Cambridge (2014)